Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival

نویسندگان

  • Amanda K. Wiggins
  • Guangwei Wei
  • Epaminondas Doxakis
  • Connie Wong
  • Amy A. Tang
  • Keling Zang
  • Esther J. Luo
  • Rachael L. Neve
  • Louis F. Reichardt
  • Eric J. Huang
چکیده

The Pit1-Oct1-Unc86 domain (POU domain) transcription factor Brn3a controls sensory neuron survival by regulating the expression of Trk receptors and members of the Bcl-2 family. Loss of Brn3a leads to a dramatic increase in apoptosis and severe loss of neurons in sensory ganglia. Although recent evidence suggests that Brn3a-mediated transcription can be modified by additional cofactors, the exact mechanisms are not known. Here, we report that homeodomain interacting protein kinase 2 (HIPK2) is a pro-apoptotic transcriptional cofactor that suppresses Brn3a-mediated gene expression. HIPK2 interacts with Brn3a, promotes Brn3a binding to DNA, but suppresses Brn3a-dependent transcription of brn3a, trkA, and bcl-xL. Overexpression of HIPK2 induces apoptosis in cultured sensory neurons. Conversely, targeted deletion of HIPK2 leads to increased expression of Brn3a, TrkA, and Bcl-xL, reduced apoptosis and increases in neuron numbers in the trigeminal ganglion. Together, these data indicate that HIPK2, through regulation of Brn3a-dependent gene expression, is a critical component in the transcriptional machinery that controls sensory neuron survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brn3a regulation of TrkA/NGF receptor expression in developing sensory neurons.

The TrkA/NGF receptor is essential for the survival and differentiation of sensory neurons. The molecular mechanisms regulating tissue and stage-specific expression of TrkA are largely unknown. The Brn3a POU-domain transcription factor has been implicated in the development of the PNS and proposed as a transcription regulator for TrkA. The molecular mechanisms underlying the regulation of TrkA ...

متن کامل

Transcriptional regulation of ferritin and antioxidant genes by HIPK2 under genotoxic stress.

ATF1 (activating transcription factor 1), a stimulus-induced CREB family transcription factor, plays important roles in cell survival and proliferation. Phosphorylation of ATF1 at Ser63 by PKA (cAMP-dependent protein kinase) and related kinases was the only known post-translational regulatory mechanism of ATF1. Here, we found that HIPK2 (homeodomain-interacting protein kinase 2), a DNA-damage-r...

متن کامل

Homeodomain-Interacting Protein Kinase-2 Regulates Apoptosis in Developing Sensory and Sympathetic Neurons

Excess neurons in the developing nervous system are eliminated by apoptosis, an ordered cascade of proteolytic events orchestrated by the caspase family of proteases. The apoptotic machinery is tightly regulated by a variety of extracellular signals that either activate or suppress apoptosis after binding to receptors on neurons. These signals are integrated in neurons by a complex network of p...

متن کامل

Neurotrophins and their Trk family receptor tyrosine kinases act on the development and function of the PNS. Numerous in vitro and in vivo studies have established the roles of each Trk receptor in neurite outgrowth, survival and differentiation

Neurotrophins and their Trk family receptor tyrosine kinases act on the development and function of the PNS. Numerous in vitro and in vivo studies have established the roles of each Trk receptor in neurite outgrowth, survival and differentiation (Bibel and Barde, 2000; Huang and Reichardt, 2001; Snider, 1994). The differential expression of Trk receptors in subsets of sensory neurons indicates ...

متن کامل

Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons.

The POU domain transcription factors Brn3a, Brn3b and Brn3c are required for the proper development of sensory ganglia, retinal ganglion cells, and inner ear hair cells, respectively. We have investigated the roles of Brn3a in neuronal differentiation and target innervation in the facial-stato-acoustic ganglion. We show that absence of Brn3a results in a substantial reduction in neuronal size, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2004